skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wi, Sungsool"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Overhauser dynamic nuclear polarization (ODNP) NMR of solutions at high fields is usually mediated by scalar couplings that polarize the nuclei of heavier, electron-rich atoms. This leaves 1H-detected NMR outside the realm of such studies. This study presents experiments that deliver 1H-detected NMR experiments on relatively large liquid volumes (60 ∼ 100 μL) and at high fields (14.1 T), while relying on ODNP enhancements. To this end 13C NMR polarizations were first enhanced by relying on a mechanism that utilizes e--13C scalar coupling interactions; the nuclear spin alignment thus achieved was then passed on to neighboring 1H for observation, by a reverse INEPT scheme relying on one-bond JCH-couplings. Such 13C 1H polarization transfer ported the 13C ODNP gains into the 1H, permitting detection at higher frequencies and with higher potential sensitivities. For a model solution of labeled 13CHCl3 comixed with a nitroxide-based TEMPO derivative as polarizing agent, an ODNP enhancement factor of ca. 5x could thus be imparted to the 1H signal. When applied to bigger organic molecules like 2-13C-phenylacetylene and 13C8-indole, ODNP enhancements in the 1.2-3x range were obtained. Thus, although handicapped by the lower γ of the 13C, enhancements could be imparted on the 1H thermal acquisitions in all cases. We also find that conventional 1H–13C nuclear Overhauser enhancements (NOEs) are largely absent in these solutions due to the presence of co-dissolved radicals, adding negligible gains and playing negligible roles on the scalar e-→13C ODNP transfer. Potential rationalizations of these effects as well as extensions of these experiments, are briefly discussed. 
    more » « less
  2. Self-assembled metal nanoparticle-polymer nanocomposite particles as nanoreactors are a promising approach for performing liquid phase reactions using water as a bulk solvent. In this work, we demonstrate rapid, scalable self-assembly of metal nanoparticle catalyst-polymer nanocomposite particles via Flash NanoPrecipitation. The catalyst loading and size of the nanocomposite particles can be tuned independently. Using nanocomposite particles as nanoreactors and the reduction of 4-nitrophenol as a model reaction, we study the fundamental interplay of reaction and diffusion. The induction time is affected by the sequence of reagent addition, time between additions, and reagent concentration. Combined, our experiments indicate the induction time is most influenced by diffusion of sodium borohydride. Following the induction time, scaling analysis and effective diffusivity measured using NMR indicate that the observed reaction rate are reaction- rather than diffusion-limited. Furthermore, the intrinsic kinetics are comparable to ligand-free gold nanoparticles. This result indicates that the polymer microenvironment does not de-activate or block the catalyst active sites. 
    more » « less
  3. Dynamic Nuclear Polarization (DNP) can increase the sensitivity of Nuclear Magnetic Resonance (NMR), but it is challenging in the liquid state at high magnetic fields. In this study we demonstrate significant enhancements of NMR signals (up to 70 on 13C) in the liquid state by scalar Overhauser DNP at 14.1 T, with high resolution (~0.1 ppm) and relatively large sample volume (~100 µL). 
    more » « less
  4. Abstract Solid‐state NMR (SSNMR) spectroscopy of integer‐spin quadrupolar nuclei is important for the molecular‐level characterization of a variety of materials and biological solids; of the integer spins,2H (S = 1) is by far the most widely studied, due to its usefulness in probing dynamical motions. SSNMR spectra of integer‐spin nuclei often feature very broad powder patterns that arise largely from the effects of the first‐order quadrupolar interaction; as such, the acquisition of high‐quality spectra continues to remain a challenge. The broadband adiabatic inversion cross‐polarization (BRAIN‐CP) pulse sequence, which is capable of cross‐polarization (CP) enhancement over large bandwidths, has found success for the acquisition of SSNMR spectra of integer‐spin nuclei, including14N (S = 1), especially when coupled with Carr–Purcell/Meiboom–Gill pulse sequences featuring frequency‐swept WURST pulses (WURST‐CPMG) forT2‐based signal enhancement. However, to date, there has not been a systematic investigation of the spin dynamics underlying BRAIN‐CP, nor any concrete theoretical models to aid in its parameterization for applications to integer‐spin nuclei. In addition, the BRAIN‐CP/WURST‐CPMG scheme has not been demonstrated for generalized application to wideline or ultra‐wideline (UW)2H SSNMR. Herein, we provide a theoretical description of the BRAIN‐CP pulse sequence for spin‐1/2 → spin‐1 CP under static conditions, featuring a set of analytical equations describing Hartmann–Hahn matching conditions and numerical simulations that elucidate a CP mechanism involving polarization transfer, coherence exchange, and adiabatic inversion. Several experimental examples are presented for comparison with theoretical models and previously developed integer‐spin CP methods, demonstrating rapid acquisition of2H NMR spectra from efficient broadband CP. 
    more » « less